<u>場外モニタリング</u> 調査速報について

場外モニタリング調査速報

1.調査の概要

1.1 地下水関係

地下水観測井戸設置用ボーリング2か所

・・・・・資料 P2 ~ P5

・・・・・ 資料 P6

井戸 番号	井戸位置	地質	地下水
G W-1	不法投棄現場の直近	基盤岩:砂 岩 盛土層:礫混じり土砂 谷底堆積物層:玉石混じり土砂	地下水位:GL-1.5m付近 (標高:50m付近) 帯 水 層:崖錐堆積物層
G W-2	不法投棄現場より約 400m下流、谷筋の中央 付近	基盤岩:砂岩・頁岩 谷底堆積物:粘土質砂礫および 玉石混じり土砂等	地下水位:GL-2.0m付近 (標高:45m付近) 帯水層:谷底堆積物層

上記観測井戸における流向測定

GW-1:北向きの流向を確認

GW-2:ボーリング孔上部で北向きの流向を確認、基岩の上部で東向きの流向を確認 監視項目の水質分析 ・・・・・・資料 P6、P8、P9

GW-1 とGW-2 を比較すると、GW-1 は全窒素およびイオン濃度が高い

1.2 河川水·排水関係

監視項目の水質分析

原川は上流にある生コン工場、砕石工場等の影響を受け、硫酸、カルシウム等のイオン濃度が高い。善商排水はイオン濃度、窒素、TOCとも高い値である。排水の流量は原川の13%程度である。

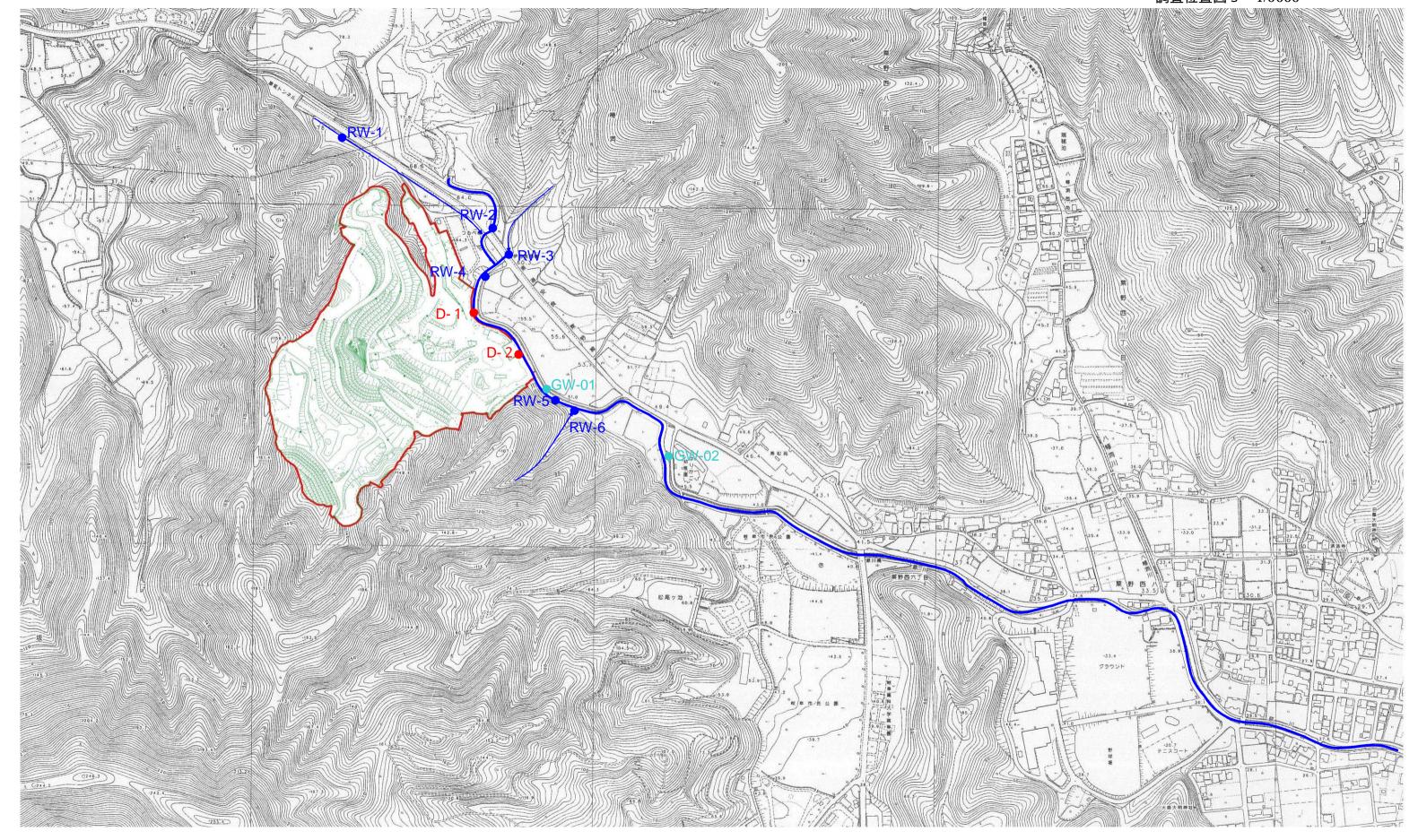
2.調査結果と考察

2.1 地下水

GW-1: 北向きの流向を示したが、全窒素、イオン濃度(特に硫酸イオンとカルシウムイオン)から、善商及び生コン工場の排水の影響を受けていると推察される。

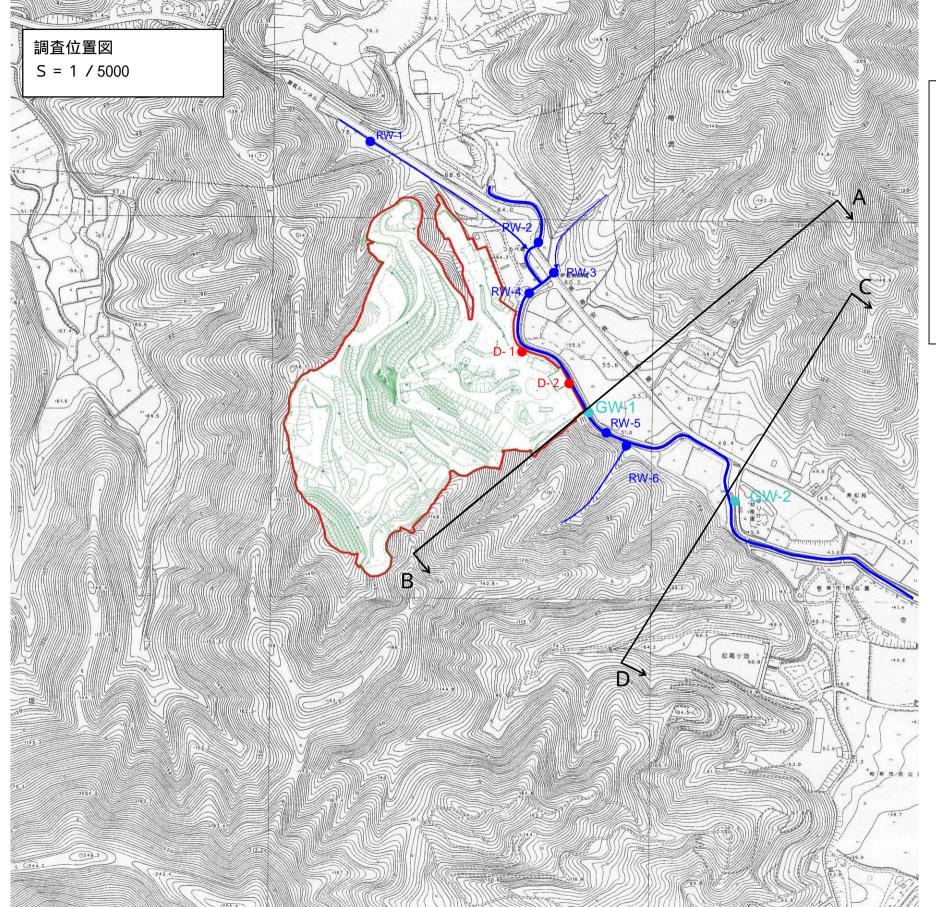
GW-2: 善商からの影響の指標となる「全窒素」「イオン濃度」は低い値である。

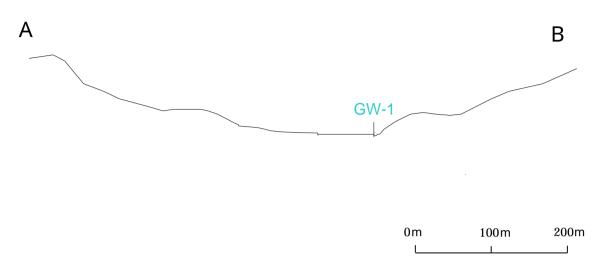
2.2 河川水

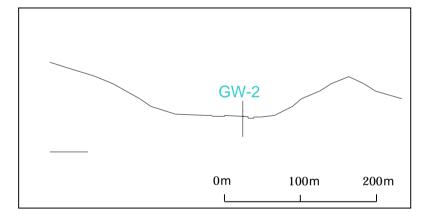

TOCおよび全窒素の値に善商の影響が考えられる。

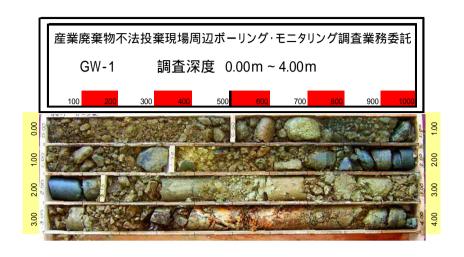
3. 今後の課題(協議事項)

地下水モニタリングについて、当初計画では、新たに2か所でボーリングを行い観測井を設置して、月2回の監視項目、年内1回の環境項目測定の実施及び地下水位、電気伝導率の連続観測であるが、今回設置した観測井で実施してよいか。


畜産センター側(南側)へ地下水が流れているか、確認できていない。 観測井戸が少なく、正確な地下水流向が確認できていない。


場外調査速報 1 調査位置図 s = 1/5000

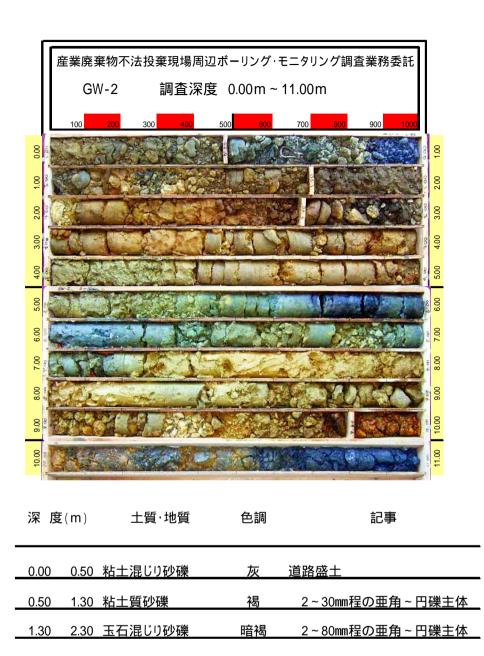




場外調査速報 3 ボーリング位置断面図

深度	E (m)	土質·地質	色調	記事	
0.00	0.50	粘土混じり砂礫	暗褐	盛土	
0.50	1.30	玉石混じり砂礫	暗褐	盛土	
1.30	2.15	玉石混じり砂礫	暗褐灰~灰	: 1.60m以下 , 玉石連続	
2.15	4.00	風化岩·砂岩	黄褐~褐灰	は 岩芯まで強風化	

地下水観測井設置


地点名	孔口標高			ストレーナ	ストレーナ長	対象帯水層			
		GLm			TP.m			m	
									玉石混じり砂
GW-1	51.39	1.50	~	4.00	49.89	~	47.39	2.50	礫

場外調査速報 4 GW-1 ボーリング柱状図

ボーリング柱状図

調 査 名 産業廃棄物不法投棄現場周辺ボーリング・モニタリング調査業務委託 ボーリングNo. 事業・工事名 ボーリング名 調査位置 G W - 1 岐阜県岐阜市椿洞地内 北 発 注 機 関 岐阜市 調査期間 平成 16年 9月 3日 ~ 16年 3月 31日 東 調査業者名 大日コンサルタント株式会社 主任技師 電話(058-271-2501) 並沢竜夫 コア 選定者 本多健一 孔口標高 コーンブーリー オイルフィード50m堀 総掘進長 4.00m ディーゼル7.5HPs ポンプ単筒連動ピストン式30 以/min 原位置試験試料採取室掘 標標層深柱 土 色 相 相 記 標準貫入試験 深試験名深試採験および結果料取の 水 淀 10cmごとの 打 撃 質 対対 打擊回数回 尺 高 厚 状 度 X 密棚 図 分調度度 事 (m) 号法 1.30~1.40m, 細砂 1.40~1.60m. 粘土混じり砂礁 1.60m以下、正石連続分布 推定の120~300ma環 (コア長4~10cm×3倍推定) 流向流速 GL-1.75m 流向流速 GL-2.00m 風化岩・砂岩 灰 岩芯まで風化進む 亀製著しく発達 コアは機然、権所に軟質化 亀製面は酸化が進み、黒褐色 3、20mまで打撃にて採扱 3、20m以ト、軟岩Wコアチュー 大変ルクラウンにて掘進 ストレーナー 1.5m ~ 4.0m

4

2~30mm程の亜角~円礫主体

マトリックスは細砂~粘土

4.50~5.20m,含水極大

5.80~5.90m,有機質

2.30	9.00	粘土質砂礫	褐~褐灰	<u> 7.25~9.00m , 粘土分多い</u>
9.00	9.80	粘土混じり砂礫	裼	2~40mm程の亜角·亜円礫主体
		171-175-171		
0.00	44.00	되사고 까고 돌고	18 to 18 to	'' '' '' '' '' '' '' '' '' '' '' '' ''
9.80	11.00	風化岩:砂岩:頁岩	<u> </u>	石心よで風化

場外調査速報 5 GW-2 ボーリング柱状図

ボーリング柱状図

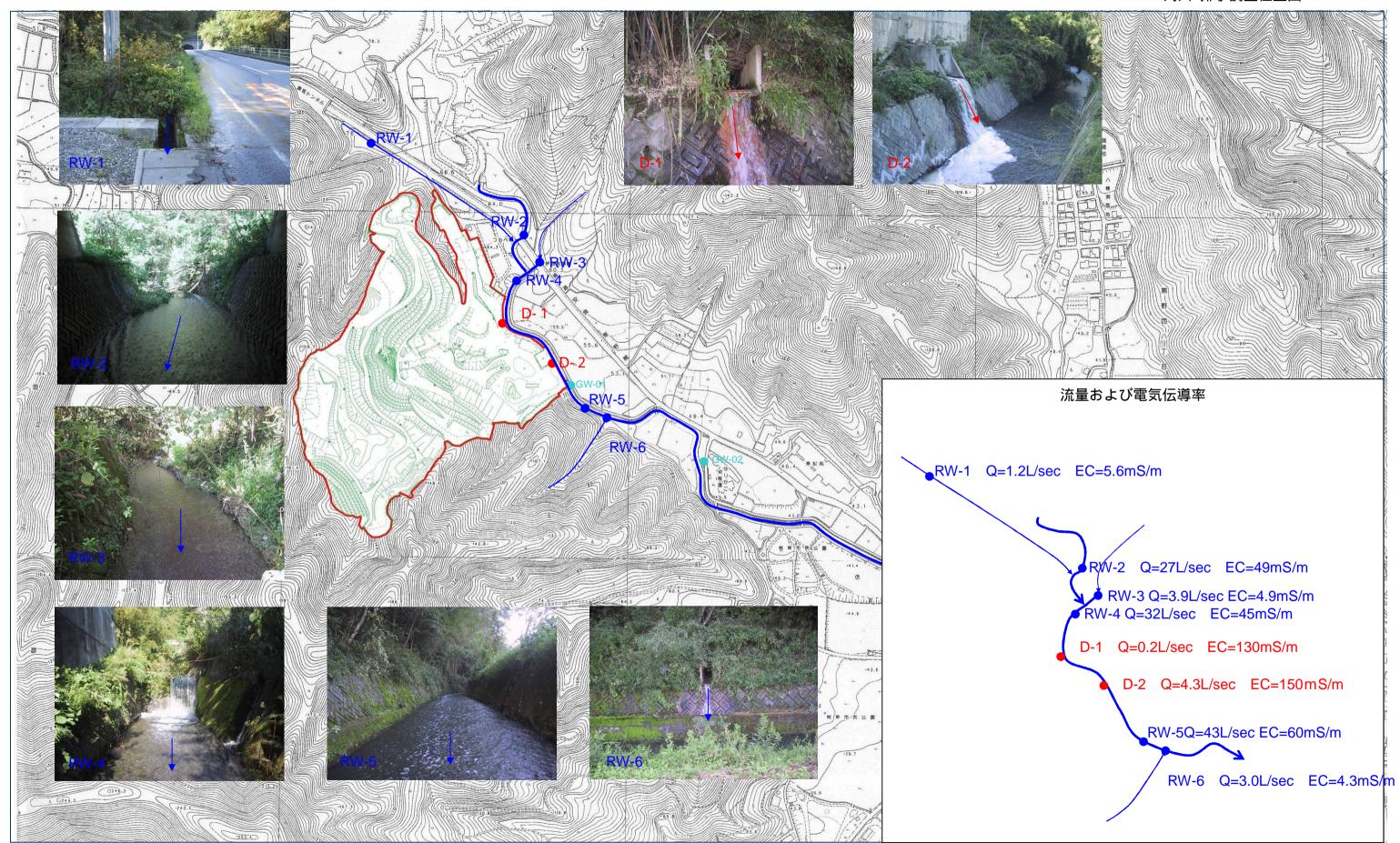
調 査 名 産業廃棄物不法投棄現場周辺ボーリング・モニタリング調査業務委託 ボーリングNo. 事業・工事名 緯 35° 29' 23.0' ボーリング名 調査位置 岐阜県岐阜市椿洞地内 北 G W - 2 発 注 機 関 岐阜市 調査期間 平成 16年 9月 3日 ~ 16年 3月 31日 東 経136 45 38.0 た日コンサルタント株式会社 電話 (058-271-2501) 韮 沢 竜 夫 本多健一 調査業者名 辻 章宏 試錐機 オイルフィード50m堀 コーンプーリー 孔口標高 11.00m エンジン ディーゼル7.5HPs ポンプ単簡連動ピストン式30%2/min 総掘進長 原位置試験試料採取室 柱 土 色 相 相 標準貫入試験 深試験名深試探試 水 位 深 10cmごとの 事 質 および結果 打擊回数回 尺高厚度 状 e 0 10 20 ^数 区 番方 図 分 調 度 度 (m) (m) 46.45 0.50 0.50 0.50 比り砂 灰 45.55 0.80 1.30 分 粉土質 福 道路盛土 鉄クズ等混在 φ 2~30mm程の円~亜角礫主体 マトリックスは粘土質細砂 φ 2~30mm程の亜角礫主体 マトリックスは粘土混じり細 9/29 145 0/5 2 18 *○○ 玉石混 暗 砂 所々, φ80mm程の玉石混在 流向流速 GL 450 8 構向: 27° 名 2~30m程の円~亜角線主体 マトリックスは粘土質細砂~ 砂質粘土 4.50~5.20m, 含水大位 15.60~6.20m, 有福質 7.25~9.00m, 精計力多く極 軟質 8.70~9.00m, 玉石多く現在 流向流速測定 流向流速 GL 8 高 32° 頁 70~9.00m,玉石多く混在 ストレーナー 11.8m ~ 111.0m 流向流速 GL - 5% 6 1 104° 2~40mm程の亜角~亜円礫主 φ2~40mm性いエム 体 マトリックスは粘土混じり細

地下水観測井設置

地点名	孔口標高		ストレーナ区間長						対象帯水層
		GLm			TP.m			m	
GW-2	46.45	1.80	~	11.00	44.65	~	35.45	9.20	粘土質砂礫~粘土混じり 砂礫

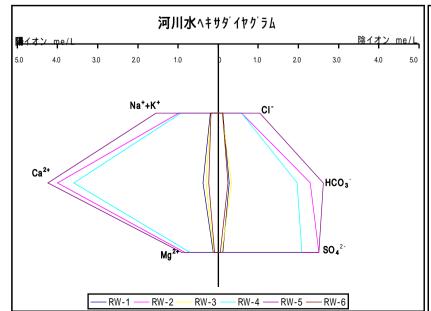
5

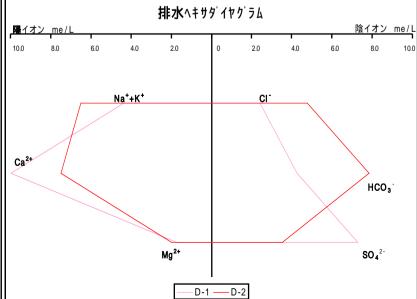
場外調査速報6

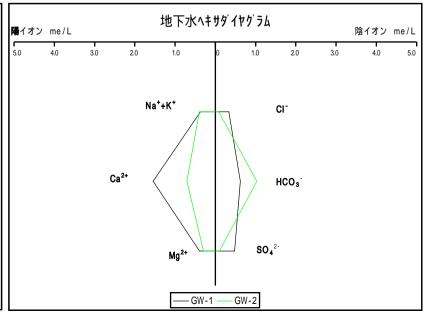

地下水流向・流速、イオン分析結果

					11107 - 1				
	地点	5名	GW	/-1	GW-2				
孔口標高	TP	(m)	51	.39	46.45				
地下水位	GL (m)			. 47		-1.46			
地下小位	TP	(m)	49.	92	44.99				
測定深度	GL	(m)	-1.75	-2.00	-4.80	-6.80	-9.60		
測止沐皮	TP	(m)	49.64	49.39	41.65	39.65	36.85		
地層			玉石混り	じり砂礫	粘土質	粘土混じり砂礫			
	流向(゜)	範囲	349 ~ 2	5 ~ 53	8 ~ 65	14 ~ 61	90 ~ 135		
流向流速計によ	까(미()	平均値	353	23	27	32	104		
る測定	孔内流速(cm/sec)	範囲	0.116 ~ 0.767	0.097 ~ 0.943	0.029 ~ 0.172	0.061 ~ 0.975	0.040~0.960		
	1 CK3 WITTE (CIII), 26C)	平均値	0.267	0.580	0.080	0.265	0.370		

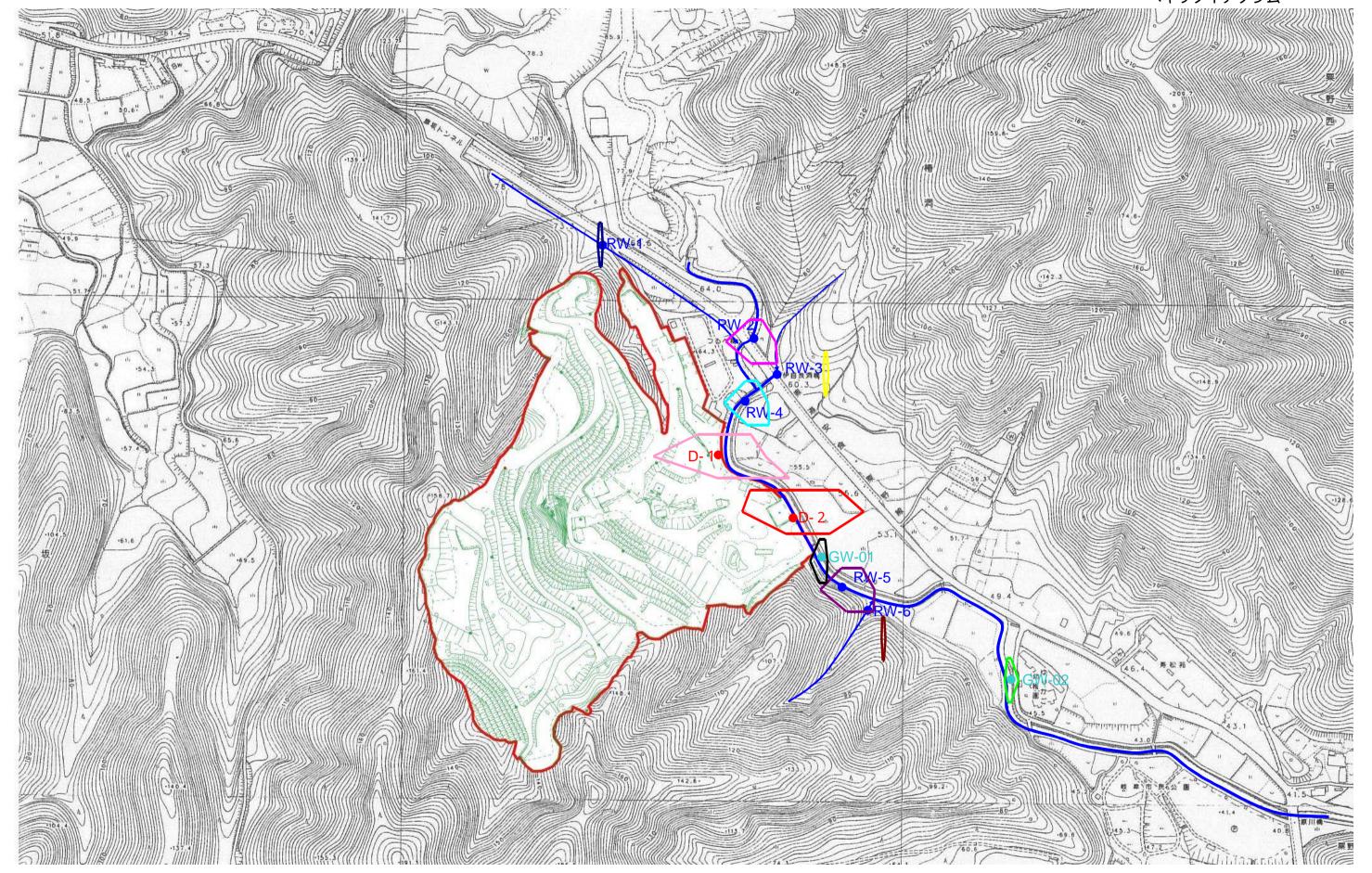
		地下水					
		GW-1	GW-2				
		善商南東側	ゆりかご幼稚園西側				
サンプルオ	采取日時	'04/9/29 13:20	'04/9/29 13:35				
CI- (mg	(mg/L)	12	2.9				
HCO ₃ -	(mg/L)	38	63				
SO ₄ ²⁻	(mg/L)	23	5.0				
Na⁺	(mg/L)	7.0	8.5				
K ⁺	(mg/L)	2.3	0.79				
Ca ²⁺	(mg/L)	31	14				
Mg ²⁺	(mg/L)	4.8	3.6				
EC	(mS/m)	22	11				
水温	()	19.5	19.5				


調査位置図 S = 1 / 5000	103.8		
	78.3 107.4 107.4 17.3 17.3 17.3 17.3 17.3 17.3 17.3 17.3		-105 PE
	6 4 . C P P P P P P P P P P P P P P P P P P		
	D ₁ 1	GL-Non-	
		19 1	
		135 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	43.1 WHIPTIPE A 3.1 W
103 x	186 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	位 5 0.6 60.6 60.6 60.6 60.6 60.6 60.6 60.	


場外調査速報 7 河川·排水調査位置図



				河川水	河川水				排水	地下水	
		RW-1	RW-2	RW-3	RW-4	RW-5	RW-6	D-1	D-2	GW-01	GW-02
		彦坂トンネル側溝	県道北側湧水	原川上流部	善商排水合流前	善商排水合流後	善商東側湧水	善商浸出水	善商調整池排水	善商南東側	ゆりかご幼稚園
		2 200 100 100 100 100 100 100 100 100 10		7507-1	H1-3311-33-H70033	113711371171	1137778333		H 1-3 H 3 H 2 S 1 H 3 S	H131.32141/3	西側
	サンプル採取日時	'04/9/21 9:25	'04/9/21 14:25	'04/9/21 13:50	'04/9/21 11:50	'04/9/21 10:20	'04/9/21 10:25	'04/9/21 11:24	'04/9/21 11:00	'04/9/29 13:20	'04/9/29 13:35
рН	(-)	6.8	7.6	7.1	7.6	7.7	7.1	6.8	7.9	6.2	6.8
TOC	(mg/L)	1未	1.6	1未	1.6	5.8	1未	7.4	43	1.5	1未
T-Cr	(mg/L)	0.02未	0.02未	0.02未	0.02未	0.02未	0.02未	0.02未	0.02未	0.02未	0.02未
SS	(mg/L)	3	5	1未	2	6	1	2	6	12	11
T-N	(mg/L)	0.99	1.1	0.72	1.2	5.5	0.62	4.0	33	7.5	0.33
DO	(mg/L)	8.5	8.5	9.0	9.0	8.5	8.9	7.0	7.2	5.0	2.8
CI-	(mg/L)	4.1	21	3.1	21	37	3.9	86	170	12	2.9
HCO ₃ -	(mg/L)	17	140	20	120	160	15	260	480	38	63
SO ₄ ²⁻	(mg/L)	5.5	120	4.2	100	120	2.4	350	170	23	5.0
Na⁺	(mg/L)	4.0	19	3.8	18	30	3.8	86	130	7.0	8.5
K ⁺	(mg/L)	0.52	6.1	0.62	5.3	9.6	0.42	24	33	2.3	0.79
Ca ²⁺	(mg/L)	7.5	80	6.2	72	85	4.8	200	150	31	14
Mg ²⁺	(mg/L)	1.4	10	1.2	8.5	11	1.1	21	24	4.8	3.6
EC	(mS/m)	5.6	49	4.9	45	60	4.3	130	150	22	11
水温	()	20.5	19.6	20.5	19.7	20.5	20.5	19.8	25.0	19.5	19.5
流量	(L/sec)	1.2	27	3.9	32	43	3.0	0.2	4.3	-	-


*河川水・地下水と排水のグラフでは、濃度(横軸)のスケールが異なる

場外調査速報 9 ヘキサダイアグラム

